

Yezin Agricultural University Department of Agricultural Economics

Economic Analysis of Direct Seeded Rice Productions in Zeyarthiri Township, Nay Pyi Taw Union Territory

Ei Thandar Lin 18.4.2024

Outline

- Introduction
- Problem Statement
- > Objectives
- Research Methodology
- Results and Discussion
- Conclusion
- Recommendations

Introduction

- Rice is a staple food for over half of the world 7.7 billion people (Bhandari, 2019)
- Important economic, social, political, and cultural commodity in most Asian countries
- About 90% of the total rice is produced in Asia
- Rice production is central to the economy and food security of Myanmar
- Rice is not only know as the main staple food but also as an important national crop
- Among the regions, Ayeyarwady, Sagaing, Bago, Mandalay, and Yangon are major rice grown areas (MOALI, 2021)

(Birhane, 2013)

Introduction (Contd.)

- Rice cultivation method was done in different ways in the world
- \succ Common methods of cultivation - transplanting and direct seeding methods
- Direct seeded rice is a major yield declining factor and if managed well can help to increase yields by substantial level
- DSR method avoid transplanting shock
- DSR was 5-10% more than the yield of transplanted rice (Gangwar et al., 2008)

Introduction (Contd.)

- Farmers got 13% higher net economic return under wet or dry DSR than TPR (Chakraborty et al., 2017)
- \blacktriangleright Input and cost of cultivation, 13-16% labor saving in DSR as compared to manual puddled transplanted rice (Sahrawat et al., 2010)
- ▶ Benefit cost ratio was highest in DSR in zero till condition 1.74 as compared to TPR 1.62 (Kumar et al., 2015)
- > Drum seeder methods, the highest BCR of 1.92 were obtained whereas TPR recorded BCR of 1.73

Problem Statement

- Appropriate agricultural practices have positive and sustainable impacts on rural farmers' livelihood and decision making activities
- Necessary to improve the production of rice in order to have sufficient domestic food consumption and foreign income
- Manual transplanting is the common method of rice cultivation but it is \mathbf{i}
 - too much laborious
 - slow and inefficient
 - time consuming and a lot of expenditure on raising
 - uprooting and transplanting of nursery (Rana et al., 2019)

Problem Statement (Contd.)

- In Myanmar, different DSR methods were cultivated nationwide area for long period
- In Nay Pyi Taw, rice is one of the major income earning crops for farmers, it is 79,334 ha of total rice sown area in 2022 (DOA, 2022)
- Farmers need to know the different costs and benefits of rice production by using three types of direct seeding methods in Nay Pyi Taw

Objectives

- To conduct economic analysis and factor share of direct seeded rice 1. production by selected farmers in Nay Pyi Taw Union Territory
- To examine the reasons and constraints of the farmers for using direct 2. seeded rice methods in the study areas

Wet DSR

RESEARCH METHODOLOGY

Dry DSR

DSR with Drum seeder

General Description of the Study Areas

- Nay Pyi Taw is located between the Bago Yoma and Shan Yoma mountain \bullet ranges
- The city covers an area of 7,054 km² (2,724 sq miles) and had a population \bullet of 114 ('000) (GAD, 2022)
- Zeyarthiri Township was selected as a sample survey area in this study \bullet
- Research was conducted in Ma Au Taw, Kyun Yaung, Khit Aye village tracts \bullet in Zeyarthiri Township

General Description of the Study Areas (Contd.)

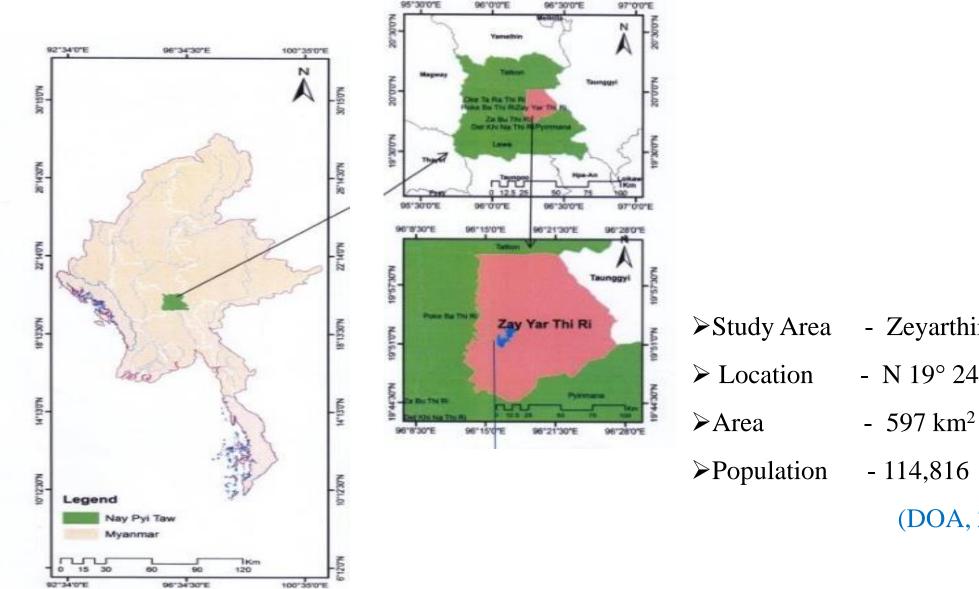
The reasons for choosing these areas were

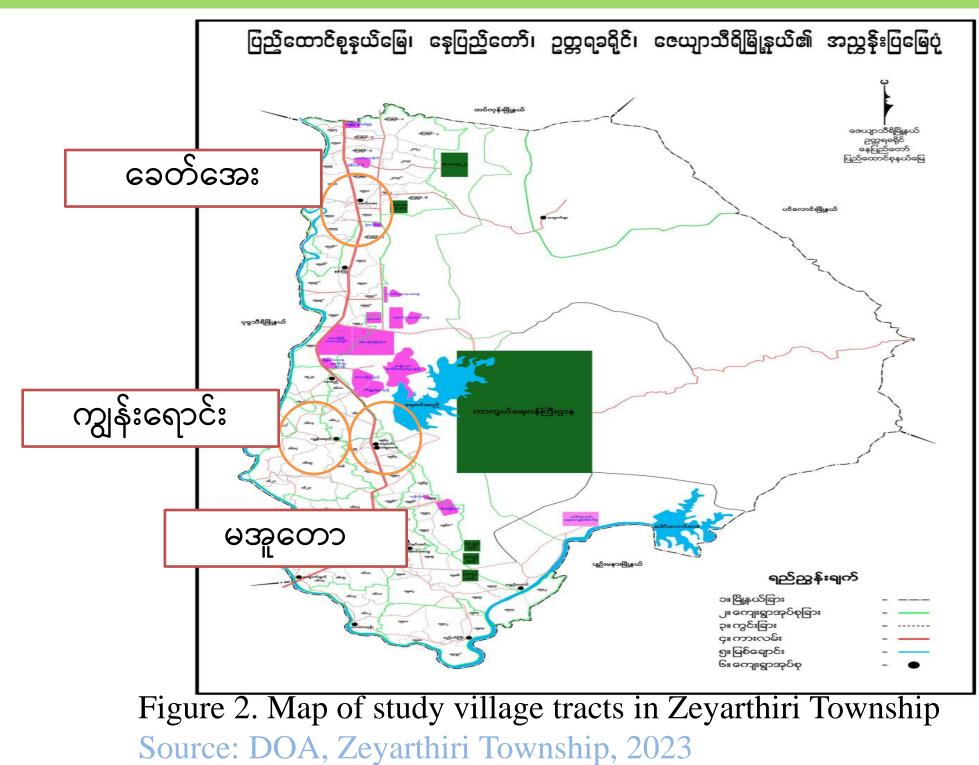
Zeyarthiri Township had total rice sown area 4,931 ha and utilized \bullet 4,882 ha as direct seeded area about 99.00% of total rice sown area

- Yezin Agricultural University and Department of Agricultural Research are closely located to this area
- To save cost and time due to time limitation for research \bullet

(DOA, 2022)

Description of the Study Area




Figure 1. Map of the Zeyarthiri Township Source: MIMU, 2019

- Zeyarthiri Township

- N 19° 24' and E 96° 40'

(DOA, Zeyarthiri Township, 2023)

Description of the Study Area

13

Table 1. Number of respondents in the study areas

No.	Village Tracts	Villages
1	Ma Au Taw	Seinzabin, Ma Au Taw, Tantabin
2	Kyun Yaung	Kyun Yaung, Letha, Shwebe, Kyobinzeik
3	Khit Aye	Khit Aye, Inn Thar, Ma Yin Gyi
	Total	

No. of respondents

Data Collection and Sampling Method

- The sampled villages were selected by using purposive sampling method (DSR farmers only)
- The primary survey data were taken from 75 farmers through structured questionnaire in August, 2023
- Age, education level, experience, household assets, livestock assets, mechanization assets, farm assets, family labor, hired labor, yield, resources used, input and output prices and transportation costs, etc.
- The secondary data sources were MOALI, IRRI, FAO, and other related publications \succ

Method of Economic Analysis

Factor	Unit	How to calcu
Return above variable cost	MMK/ha	RAVC = TR-TVC
Return above variable cash cost	MMK/ha	RAVCC = TR-TVCC
Gross margin	MMK/ha	GM = TR-TVC
Benefit cost ratio		BCR = TR/TVC
Break-even yield	Ton/ha	TVC/Average market price pe
Break-even price	MMK/ton	TVC/Average yield per hectar
Where;		

TR	= Total revenue
TVC	= Total variable cost
TVCC	= Total variable cash cost

ulate

er ton

are

Source: (Olson., 2003)

Method of Factor Share Analysis

Factor share of gross margin (%)	= Gross margin/Total revenue × 100
Factor share of interest cash cost (%)	= Interest cash cost/Total revenue \times 100
Factor share of hired labor cost (%)	= Hired labor cost/Total revenue × 100
Factor share of family labor cost (%)	= Family labor cost/Total revenue × 100
Factor share of material cost (%)	= Material cost/Total revenue × 100
Total input share (%)	= Material cost + Labor cost + Interest c
Farmers' farm income	= Gross margin + Family labor cost

Source:(IRRI,1991)

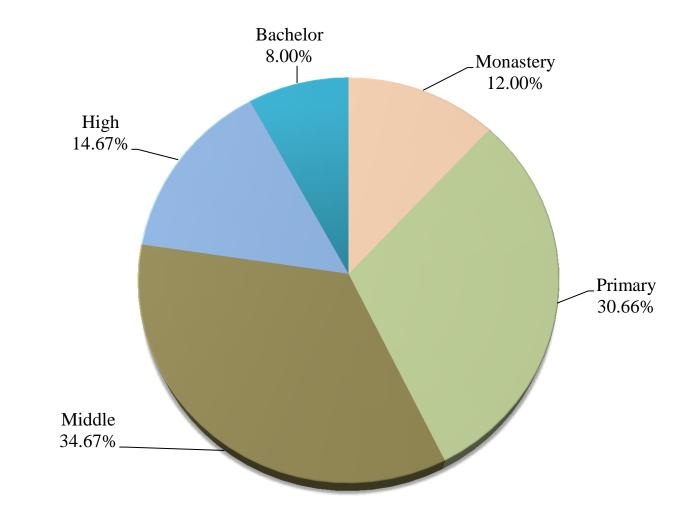
)()

$\left(\right)$

cost

17

ESULTS AND DISCUSSION


Table 2. Demographic characteristics of sampled farm household heads in the study areas

Items	Unit	Average
Age	Year	53.81
Farming experience	Year	27.65
Experience by using DSR method	Year	11.33
Experience by using previous transplanted method	Year	12.05
Household size	No.	4.76
Farm size (Lowland)	ha	2.05
Farm size (Upland)	ha	0.80

Range

- 30 80
- 4 64
- 3 51
- 1 57
 - 1-10
- 0.5 12
 - 0 8

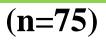
Figure 3. Education levels of sampled farm household heads (n=75)

Table 3. Farm assets of sampled farmers in the study areas

Items	Frequency
Hoe	72
Sickle	64
Sprayer (battery)	46
Sprayer	43
Plough/Harrow	36
Water pump	36
Bullock cart	35
Inter cultivator	10
Threshing machine	7
Hand tractor	6
Tractor	2
Combine harvester	1

Percent

- 96.00
- 85.33
- 61.33
- 57.33
- 48.00
- 48.00
- 46.66
- 13.33
- 9.33
- 8.00
- 2.66
- 1.33



Economic analysis and factor share of direct seeded rice methods in the study area

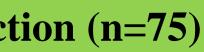
Table 4. Descriptive statistics of output based on each sampled farmers

Variables Unit		Wet DSR	Dry DSR	
Yield				
Average	Ton/ha	4.07	4.00	
Range	Ton/ha	2.47- 5.54	2.00 - 5.00	
Price				
Average	'000 MMK/ton	637	610	
Range	'000 MMK/ton	400 - 900	425 - 900	

DSR with drum seeder

)() 4.49

)() 2.97 - 5.44


|0|832

600 - 1,750

23

Table 5. Material costs of different DSR methods of rice production (n=75)

Items	Wet DSR	Dry DSR	DSR with drum seeder
Items		('000 MMK/ha)
Seed	121	132	131
FYM	39	29	25
Urea	228	216	257
T-super	13	18	61
Potash	8	9	31
Compound	165	153	189
Gypsum	0.5	7	7
Lime	0.3	0	0.34
Compost	3	0	1
Herbicide	40	52	38
Pesticide	34	21	39
Foliar	16	12	15
Diesel	1	15	11
Others	16	4	17
Total material cost /ha	690	673	830

Total DSR

- 0.23

Table 6. Family labor costs of different DSR methods of rice production(n=75)

Items	Wet DSR	Dry DSR	DSR with drum seeder			
		('000 MMK/ha)				
Ploughing	26	19	24			
Harrowing	19	13	37			
Levelling	1	1	13			
Basal fertilizer application	7	5	5			
Seed broadcasting	5	б	1			
Fertilizer application	11	8	20			
Weeding	7	14	5			
Irrigation	25	18	24			
Roughing	2	2	10			
Pesticide application	6	5	10			
Herbicide application	10	10	10			
Transportation (home)	2	3	10			
Drying	22	23	24			
Storage	1	3	9			
Total family labor cost /ha	151	136	208			

Total DSR

08	165	25
9	4	
24	23	
10	5	
10	10	
10	7	
10	5	
24	23	
5	9	
20	13	
1	4	
5	6	
13	5	
37	23	
24	23	

 Table 7. Hired labor costs of different DSR methods in the study areas(n=75)

Items	Wet DSR	Dry DSR	DSR with drum seeder	Total DSR	
	(000 MMK/ha)				
Ploughing	118	103	103	109	
Harrowing	75	87	88	84	
Levelling	11	9	25	15	
Basal fertilizer application	5	4	2	4	
Seed broadcasting	8	9	42	19	
Fertilizer application	10	9	4	7	
Weeding	50	79	54	61	
Irrigation	5	0.49	0	1	
Roughing	7	9	18	12	
Pesticide application	10	3	8	7	
Herbicide application	10	10	4	8	
Combined harvester	196	186	207	196	
Threshing	0	0	4	1	
Transportation (home)	25	17	13	17	
Drying	19	19	13	17	
Storage	9	2	13	8	
Transportation (sell)	0	2	1	1	
Total hired labor cost/ha	562	554	607	576	

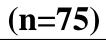
Table 8. Enterprise budget by using different DSR methods of rice production

		Wet	Dry	DSR w
Items	Unit	DSR	DSR	se
		(n=25)	(n=25)	(n:
Total revenue		2,593	2,442	
Total variable cost		1,442	1,401	
Total variable cash cost	'000 MMK/ha	1,290	1,264	
Return above variable cost	000 WIWK/IIA	1,151	1,041	
Return above variable cash cost		1,302	1,178	
Gross margin		1,151	1,041	
Benefit cost ratio		1.79	1.74	
Break-even price	*MMK/ton	354	329	
Break-even yield	Ton/ha	2.26	2.43	
Note: * materia to (1000 MN/V)				

Note : *refers to ('000 MMK)

with drum Total DSR eeder (n=75)

n=25)


- 3,736 2,924
- 1,690 1,513
- 1,481 1,347
- 2,045 1,410
- 2,254 1,576
- 2,045 1,410
 - 2.21 1.92
 - 376 352

2.03 2.21

Table 9. Factor shares by using different DSR methods of rice productio

	Factor share (%)			
Variables	Wet DSR	Dry DSR	DSR with drum seeder	Total DSR
Total revenue	100.00	100.00	100.00	100.00
Factor Share (%)				
Gross margin	44.39	42.63	54.74	48.25
Interest on cash cost	1.45	1.51	1.16	1.34
Hired labor cost	21.70	22.70	16.27	19.72
Family labor cost	5.84	5.60	5.59	5.67
Material cost	26.62	27.57	22.24	25.02
Farmers' farm income	50.22	48.23	60.33	53.99
				2

The reasons and constraints of the selected farmers for using direct seeded rice methods in the study area

Table 10. Reasons for changing DSR methods of sampled farmers

No.	Items	Fr
1	Lower cost than transplanting methods	
2	Labor scarcity at peak season	
3	Getting higher yield than transplanting methods	
4	Not available irrigation water	
5	Adaptation to climate change than transplanting methods	
6	Time saving than transplanting methods	
7	Easy to manage because of a little practices in DSR cultivation method	
8	DSR by using drum seeder is suitable to produce rice seed	

9 DSR by using drum seeder have fertilizer supporting

(n=75)

Percent requency

- 76.00 57
- 32.00 24
- 11 14.66
- 9 12.00
- 9 12.00
- 5 6.66
- 1 1.33
- 1.33 1

1

1.33

Table 11. General constraints in DSR methods faced by selected in Zeyarthiri Township

No.	Items
1	Loss of seeds in the field
2	High price of fertilizers
3	Crop loss of over harvesting time due to limitation of hiring combined harvester
4	Labor scarcity at peak season
5	Limitation of quality seed availability
6	Poor germination rate of seed
7	Poor soil fertility
8	Weak extension service for production technologies
9	High fuel cost for irrigation

- 10 Not available of required agrochemicals in the market
- 11 Crop loss in the field due to weeds and pests
- 12 Constraint of available price information in time
- 13 Limitation for credit availability

(n=75)

Frequency	Percent
54	72.00
50	66.66
44	58.66
41	54.66
40	53.33
37	49.33
36	48.00
34	45.33
33	44.00
31	41.33
30	40.00
20	26.66
20	26.66

Conclusion

- Majority of sample farmers were about 54 years with 28 years average farming ulletexperiences, middle school level, followed by primary school level
- Among three different DSR methods, the BCR of drum seeder is the highest lacksquare
- The main reasons for changing DSR methods of sampled farmers were lower cost than • transplanting methods (76.00%), labor scarcity at peak season (32.00%), not available irrigation water (12.00%), and apart from these reasons farmers are trying to adaptable for climate change (12.00%)
- On the other hand, they still had constraints in rice production, particularly the loss of \bullet seeds in the field (72.00%), the high price of fertilizers (66.66%), crop loss of over harvesting time due to limitation of hiring combined harvester (58.66%)

32

Recommendations

- Profitability of rice farming is essential for improving livelihoods
- DSR with drum seeder method should be encouraged for getting more profit •
- To remedy the constraint of insufficient irrigated water, the availability of irrigated water \bullet sources for rice production should be provided
- Therefore, farmers decide to apply DSR methods in rice production \bullet
- DSR by using drum seeder should be used to rice production.
- To overcome these constraints, public sector should be aware and formulate the evidence • based plan, strategies and policies

Thank You Very Much for Your Kind Attention